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A set of mathematical relationship between torsion potential functions such as trigonomet-
ric and Fourier series is presented herein. A harmonic approximation form is also introduced,
and its stiffness constant is related to the parameters of trigonometric and Fourier series. Math-
ematical relationships between various force field parameters are presented in the form of
conversion matrices.
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1. Introduction

Molecular modeling can be broadly categorized into two major groups: quantum
mechanics approach and molecular mechanics approach. Quantum mechanics explicitly
represents the electrons in a calculation, thereby enabling it to derive behaviors that de-
pend upon the electronic distribution and, in particular, in studying chemical reactions
in which bonds are broken and formed. Molecular mechanics (also known as the force
field method) neglect electronic motions and calculates the energy of a system as a func-
tion of nuclear positions only. Some problems that are considered too large for quantum
mechanics can be dealt with by force field approach. Though unable to provide proper-
ties that depend upon the electronic distribution in a molecule (such as bond breaking
and formation in chemical reaction), the force field method can provide solutions (such
as material modulus) that are reasonably good and in a fraction of computation time
in comparison to the quantum mechanical method. Force fields include bonded interac-
tions (such as bond stretching, bending and torsion) as well as non-bonded interaction
(such as van der Waals and Coulombic forces). As the name suggests, bond stretching
force field refers to the potential energy stored when two covalently bonded atoms are
stretched further from or compressed nearer to one another such that r − r0 �= 0 (see
figure 1). Similarly, bond bending corresponds to the stored potential when three atoms
linked by two covalent bonds are relatively displaced such that the bond angle changes,
i.e., θ − θ0 �= 0. Likewise, torsion force field is associated to the stored potential when
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Figure 1. Schematic for bonded interactions.

Figure 2. Inter-relationships between molecular mechanics torsional parameters developed herein.

a bond is twisted by an angle φ, as determined by four atoms linked in series by covalent
bonds. With reference to figure 1, torsion of the bond linking atoms j and k is said to
have taken place when the plane formed by atoms ijk bends with respect to the plane
formed by atoms jkl, about the axis jk.

Two of the most highly utilized molecular mechanics models for torsional potential
energy of a covalent bond are the trigonometric series [1–16]

Uφ = 1

2

m∑
n=1

kφn(1− cos nφ) (1)

and the Fourier series [17–26]

UT =
m∑
n=0

kT n cosn φ. (2)

To a much lesser extent, a harmonic approximation of the form

UH = 1

2
kHφ

2 (3)

is valid only when the amount of dihedral twisting is infinitesimal. Relationships be-
tween the three types of molecular mechanics models for torsion of single covalent bonds
are developed herein using trigonometry and Maclaurin’s series for cosine. In the fore-
going analysis, both trigonometric and Fourier series are expanded up to m = 5, which
is the maximum value considered in the literature. A summary of relationships made
herein amongst the trigonometric series function, Fourier series function and harmonic
approximation form is shown in figure 2.
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2. Analysis

Substituting

cos 2φ = 2 cos2 φ − 1, (4a)

cos 3φ = 4 cos3 φ − 3 cos φ, (4b)

cos 4φ = 8 cos4 φ − 8 cos2 φ + 1, (4c)

cos 5φ = 16 cos5 φ − 20 cos3 φ + 5 (4d)

into equation (1), we have

Uφ = 1

2
(kφ1 + 2kφ2 + kφ3 + kφ5)− 1

2
(kφ1 − 3kφ3 + 5kφ5) cosφ − (kφ2 − kφ4) cos2 φ

−2(kφ3 − 5kφ5) cos3 φ − 4kφ4 cos4 φ − 8kφ5 cos5 φ. (5)

Comparing equation (5) with equation (2), the stiffness parameters associated with the
Fourier series can be obtained from those in trigonometric series:

kT 0= 1

2
(kφ1 + 2kφ2 + kφ3 + kφ5), (6a)

kT 1=−1

2
(kφ1 − 3kφ3 + 5kφ5), (6b)

kT 2=−(kφ2 − kφ4), (6c)

kT 3=−2(kφ3 − 5kφ5), (6d)

kT 4=−4kφ4, (6e)

kT 5=−8kφ5. (6f)

Solving equations (6a)–(6f) simultaneously gives the stiffness parameters of trigonomet-
ric series in terms of those from Fourier series:

kφ1 =−1

8
(16kT 1 + 12kT 3 + 10kT 5), (7a)

kφ2 =−(kT 2 + kT 4), (7b)

kφ3 =−1

8
(4kT 3 + 5kT 5), (7c)

kφ4 =−1

4
kT 4, (7d)

kφ5 =−1

8
kT 5. (7e)

Both trigonometric and Fourier series can be approximated into the harmonic form using
the Maclaurin series expansion for the cosine function,

cos x =
+∞∑
n=0

(−1)nx2n

(2n)! ≈ 1− x
2

2
, (8)
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which is convergent when |x| < 1. Neglecting orders higher than x2 is thus valid when
x → 0. Hence for infinitesimal torsion,

cos(nφ) = 1− n
2φ2

2
(9)

and

cosn φ = 1−
(
n

2

)
φ2. (10)

Substituting equations (9) and (10) into equations (1) and (2), respectively, leads to

Uφ = 1

2

(
5∑
n=1

kφnn
2

2

)
φ2 (11)

and

UT =
5∑
n=0

kT n − 1

2

(
5∑
n=1

kT nn

)
φ2. (12)

Comparing equations (11) and (12) with equation (3) gives

kH = 1

2

5∑
n=1

kφnn
2, (13)

kH =−
5∑
n=1

kT nn (14)

and

5∑
n=0

kT n = 0. (15)

From equations (6) and (7), relationship between trigonometric series and Fourier series
form of chemical bond torsion can be summarized as

{kT i} = −1

2

[
φT Cij

]{kφj }; i = 0, 1, . . . , 5, j = 1, 2, . . . , 5 (16)

and

{kφi} = −1

8

[
T φCij

]{kTj }; i, j = 1, 2, . . . , 5, (17)
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where the trigonometric-to-Fourier conversion matrix, φT C, and the Fourier-to-trigono-
metric conversion matrix, T φC, are

[φT
C
] =




−1 −2 −1 0 −1
1 0 −3 0 5
0 2 0 −8 0
0 0 4 0 −20
0 0 0 8 0
0 0 0 0 16




(18)

and

[T φ
C
] =




16 0 12 0 10
0 8 0 8 0
0 0 4 0 5
0 0 0 2 0
0 0 0 0 1


 , (19)

respectively. From equations (13) and (14), relationship between the harmonic form and
trigonometric and Fourier forms can be summarized as

kH = 1

2

[
HCij

]2{kφj } = −
[
HCij

]{kTj }, (20)

where the conversion matrix into harmonic form, HC, is

[H
C
] =




1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5


 . (21)

In all three conversion matrices, there exists some form of integer pattern which
gives interesting insight into the mathematical relationship among the bond-torsion force
field equations.

3. Results and discussion

To verify the validity of these inter-relationships, “barrier” heights (kT n) from Boyd
et al. [6,15] are substituted into equation (6), and compared with the coefficients of
Fourier series from Sumpter et al. [21,22,24,26]. As shown in table 1, good agreement
between the two sets of parameters ascertains the validity of the exact connection be-
tween kφn and kT n. The good agreement between both sets of coefficients may well be
attributed to the exact relationships up to m = 5 as described in equations (6) and (7).
Verification on the limited validity of the harmonic form is shown in figure 3 based on
data from Boyd et al. [6,15] whereby kφ1 = 3.35 kJ/mol and kφ3 = 13.4 kJ/mol. It can
be seen that the harmonic approximation is valid within ±20 radians of twisted angle φ.
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Table 1
Validation of relationship between trigonometric and Fourier series parameters.

Coefficients of Fourier series Data from Sumpter et al. Calculated from Boyd et al. [6,15] where
[21,22,24,26] kφ1 = 3.35 kJ/mol and kφ3 = 13.4 kJ/mol

kT 0 8.37 kJ/mol 8.375 kJ/mol
kT 1 18.4 kJ/mol 18.425 kJ/mol
kT 2 0 0
kT 3 −26.78 kJ/mol −26.8 kJ/mol
kT 4 0 0
kT 5 0 0

Figure 3. Comparison between series solution and harmonic approximation to torsional potential.

The harmonic form diverges thereafter from the actual result for larger twisted angle, as
shown in equation (8). The harmonic approximations described in equations (13) and
(14) are nonetheless valid for infinitesimal deformation, and is analogous to the har-
monic approximations for bond stretching and bending [5,7,8,16,26], as listed in table 2.

4. Conclusions

A set of mathematical relationships connecting parameters of torsional force field
potential has been demonstrated in this note. Notwithstanding the empirical nature of the
molecular mechanics models, i.e., the parameters are obtained by curve fitting of exper-
imental results, both “exact” and approximate relationships exist nonetheless between
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Table 2
Molecular mechanics models for stretching and bending, and their relations.

Interactions Functions Parameters Relationships

Bond (i) Morse potential D,α

stretching: U = D{1− exp[−α(r − r0)]}2 kS = 2Dα2

r = bond length,
r0 = equilibrium (ii) Harmonic approximation kS [5,7,8,16,27]
bond length U = 1

2 kS(r − r0)2
Bond (i) Cosine harmonic angle kCθ

bending: U = 1
2 kCθ (cos θ − cos θ0)

2 kθ = kCθ sin2 θ0
θ = bond angle,
θ0 = equilibrium (ii) Harmonic approximation kθ [5,7,16,27]
bond angle U = 1

2 kθ (θ − θ0)
2

the three torsional potential functions considered herein. From the applied research and
industrial application viewpoint, data from trigonometric series function can now be con-
verted for use in softwares which require those of Fourier series function, and vice versa.
From the mathematical view point, relationship between the various bond-torsional force
fields can be expressed via conversion matrices.
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